Speeding Up Path Planning via Reinforcement Learning in MCTS for Automated Parking

25 Mar 2024  ·  Xinlong Zheng, Xiaozhou Zhang, Donghao Xu ·

In this paper, we address a method that integrates reinforcement learning into the Monte Carlo tree search to boost online path planning under fully observable environments for automated parking tasks. Sampling-based planning methods under high-dimensional space can be computationally expensive and time-consuming. State evaluation methods are useful by leveraging the prior knowledge into the search steps, making the process faster in a real-time system. Given the fact that automated parking tasks are often executed under complex environments, a solid but lightweight heuristic guidance is challenging to compose in a traditional analytical way. To overcome this limitation, we propose a reinforcement learning pipeline with a Monte Carlo tree search under the path planning framework. By iteratively learning the value of a state and the best action among samples from its previous cycle's outcomes, we are able to model a value estimator and a policy generator for given states. By doing that, we build up a balancing mechanism between exploration and exploitation, speeding up the path planning process while maintaining its quality without using human expert driver data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here