Spherical Harmonics for the 1D Radiative Transfer Equation I: Reflected Light

10 Apr 2023  ·  Caoimhe M. Rooney, Natasha E. Batalha, Mark S. Marley ·

A significant challenge in radiative transfer theory for atmospheres of exoplanets and brown dwarfs is the derivation of computationally efficient methods that have adequate fidelity to more precise, numerically demanding solutions. In this work, we extend the capability of the first open-source radiative transfer model for computing the reflected light of exoplanets at any phase geometry, PICASO: Planetary Intensity Code for Atmospheric Spectroscopy Observations. Until now, PICASO has implemented two-stream approaches to the solving the radiative transfer equation for reflected light, in particular following the derivations of Toon et al. (1989) (Toon89). In order to improve the model accuracy, we have considered higher-order approximations of the phase functions, namely, we have increased the order of approximation from 2 to 4, using spherical harmonics. The spherical harmonics approximation decouples spatial and directional dependencies by expanding the intensity and phase function into a series of spherical harmonics, or Legendre polynomials, allowing for analytical solutions for low-order approximations to optimize computational efficiency. We rigorously derive the spherical harmonics method for reflected light and benchmark the 4-term method (SH4) against Toon89 and two independent and higher-fidelity methods (CDISORT & doubling-method). On average, the SH4 method provides an order of magnitude increase in accuracy, compared to Toon89. Lastly, we implement SH4 within PICASO and observe only modest increase in computational time, compared to two-stream methods (20% increase).

PDF Abstract


Earth and Planetary Astrophysics Instrumentation and Methods for Astrophysics Solar and Stellar Astrophysics