Stability And Uncertainty Propagation In Power Networks: A Lyapunov-based Approach With Applications To Renewable Resources Allocation

8 May 2024  ·  Mohamad Kazma, Ahmad F. Taha ·

The rapid increase in the integration of intermittent and stochastic renewable energy resources (RER) introduces challenging issues related to power system stability. Interestingly, identifying grid nodes that can best support stochastic loads from RER, has gained recent interest. Methods based on Lyapunov stability are commonly exploited to assess the stability of power networks. These strategies approach quantifying system stability while considering: (i) simplified reduced order power system models that do not model power flow constraints, or (ii) datadriven methods that are prone to measurement noise and hence can inaccurately depict stochastic loads as system instability. In this paper, while considering a nonlinear differential algebraic equation (NL-DAE) model, we introduce a new method for assessing the impact of uncertain renewable power injections on the stability of power system nodes/buses. The identification of stable nodes informs the operator/utility on how renewables injections affect the stability of the grid. The proposed method is based on optimizing metrics equivalent to the Lyapunov spectrum of exponents; its underlying properties result in a computationally efficient and scalable stable node identification algorithm for renewable energy resources allocation. The proposed method is validated on the IEEE 9-bus and 200-bus networks

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here