Stochastic Multivariate Universal-Radix Finite-State Machine: a Theoretically and Practically Elegant Nonlinear Function Approximator

3 May 2024  ·  Xincheng Feng, Guodong Shen, Jianhao Hu, Meng Li, Ngai Wong ·

Nonlinearities are crucial for capturing complex input-output relationships especially in deep neural networks. However, nonlinear functions often incur various hardware and compute overheads. Meanwhile, stochastic computing (SC) has emerged as a promising approach to tackle this challenge by trading output precision for hardware simplicity. To this end, this paper proposes a first-of-its-kind stochastic multivariate universal-radix finite-state machine (SMURF) that harnesses SC for hardware-simplistic multivariate nonlinear function generation at high accuracy. We present the finite-state machine (FSM) architecture for SMURF, as well as analytical derivations of sampling gate coefficients for accurately approximating generic nonlinear functions. Experiments demonstrate the superiority of SMURF, requiring only 16.07% area and 14.45% power consumption of Taylor-series approximation, and merely 2.22% area of look-up table (LUT) schemes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here