StratLearner: Learning a Strategy for Misinformation Prevention in Social Networks

NeurIPS 2020  ·  Guangmo Tong ·

Given a combinatorial optimization problem taking an input, can we learn a strategy to solve it from the examples of input-solution pairs without knowing its objective function? In this paper, we consider such a setting and study the misinformation prevention problem. Given the examples of attacker-protector pairs, our goal is to learn a strategy to compute protectors against future attackers, without the need of knowing the underlying diffusion model. To this end, we design a structured prediction framework, where the main idea is to parameterize the scoring function using random features constructed through distance functions on randomly sampled subgraphs, which leads to a kernelized scoring function with weights learnable via the large margin method. Evidenced by experiments, our method can produce near-optimal protectors without using any information of the diffusion model, and it outperforms other possible graph-based and learning-based methods by an evident margin.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods