Sub-second periodicity in a fast radio burst

18 Jul 2021  ·  The CHIME/FRB Collaboration, Bridget C. Andersen, Kevin Bandura, Mohit Bhardwaj, P. J. Boyle, Charanjot Brar, Daniela Breitman, Tomas Cassanelli, Shami Chatterjee, Pragya Chawla, Jean-François Cliche, Davor Cubranic, Alice P. Curtin, Meiling Deng, Matt Dobbs, Fengqiu Adam Dong, Emmanuel Fonseca, B. M. Gaensler, Utkarsh Giri, Deborah C. Good, Alex S. Hill, Alexander Josephy, J. F. Kaczmarek, Zarif Kader, Joseph Kania, Victoria M. Kaspi, Calvin Leung, D. Z. Li, Hsiu-Hsien Lin, Kiyoshi W. Masui, Ryan Mckinven, Juan Mena-Parra, Marcus Merryfield, B. W. Meyers, D. Michilli, Arun Naidu, Laura Newburgh, C. Ng, Anna Ordog, Chitrang Patel, Aaron B. Pearlman, Ue-Li Pen, Emily Petroff, Ziggy Pleunis, Masoud Rafiei-Ravandi, Mubdi Rahman, Scott Ransom, Andre Renard, Pranav Sanghavi, Paul Scholz, J. Richard Shaw, Kaitlyn Shin, Seth R. Siegel, Saurabh Singh, Kendrick Smith, Ingrid Stairs, Chia Min Tan, Shriharsh P. Tendulkar, Keith Vanderlinde, D. V. Wiebe, Dallas Wulf, Andrew Zwaniga ·

Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light-years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multi-component FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components with a significance of 6.5 sigmas. The long (~3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Astrophysical Phenomena