Super-resolution reconstruction of hyperspectral images via low rank tensor modeling and total variation regularization

23 Jan 2016  ·  Shiying He, Haiwei Zhou, Yao Wang, Wenfei Cao, Zhi Han ·

In this paper, we propose a novel approach to hyperspectral image super-resolution by modeling the global spatial-and-spectral correlation and local smoothness properties over hyperspectral images. Specifically, we utilize the tensor nuclear norm and tensor folded-concave penalty functions to describe the global spatial-and-spectral correlation hidden in hyperspectral images, and 3D total variation (TV) to characterize the local spatial-and-spectral smoothness across all hyperspectral bands. Then, we develop an efficient algorithm for solving the resulting optimization problem by combing the local linear approximation (LLA) strategy and alternative direction method of multipliers (ADMM). Experimental results on one hyperspectral image dataset illustrate the merits of the proposed approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here