Symmetric Dense Inception Network for Simultaneous Cell Detection and Classification in Multiplex Immunohistochemistry Images

Deep-learning-based automatic analysis of the multiplex immunohistochemistry (mIHC) enables distinct cell populations to be localized on a large scale, providing insights into disease biology and therapeutic targets. However, standard deep-learning pipelines performed cell detection and classification as two-stage tasks, which is computationally inefficient and faces challenges to incorporate neighbouring tissue context for determining the cell identity. To overcome these limitations and to obtain a more accurate mapping of cell phenotypes, we presented a symmetric dense inception neural network for detecting and classifying cells in mIHC slides simultaneously. The model was applied with a novel stop-gradient strategy and a loss function accounted for class imbalance. When evaluated on an ovarian cancer dataset containing 6 cell types, the model achieved an F1 score of 0.835 in cell detection, and a weighted F1-score of 0.867 in cell classification, which outperformed separate models trained on individual tasks by 1.9% and 3.8% respectively. Taken together, the proposed method boosts the learning efficiency and prediction accuracy of cell detection and classification by jointly learning from both tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here