Testing Autonomous Systems with Believed Equivalence Refinement

8 Mar 2021  ·  Chih-Hong Cheng, Rongjie Yan ·

Continuous engineering of autonomous driving functions commonly requires deploying vehicles in road testing to obtain inputs that cause problematic decisions. Although the discovery leads to producing an improved system, it also challenges the foundation of testing using equivalence classes and the associated relative test coverage criterion. In this paper, we propose believed equivalence, where the establishment of an equivalence class is initially based on expert belief and is subject to a set of available test cases having a consistent valuation. Upon a newly encountered test case that breaks the consistency, one may need to refine the established categorization in order to split the originally believed equivalence into two. Finally, we focus on modules implemented using deep neural networks where every category partitions an input over the real domain. We present both analytical and lazy methods to suggest the refinement. The concept is demonstrated in analyzing multiple autonomous driving modules, indicating the potential of our proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here