Testing for an Explosive Bubble using High-Frequency Volatility

3 May 2024  ·  H. Peter Boswijk, Jun Yu, Yang Zu ·

Based on a continuous-time stochastic volatility model with a linear drift, we develop a test for explosive behavior in financial asset prices at a low frequency when prices are sampled at a higher frequency. The test exploits the volatility information in the high-frequency data. The method consists of devolatizing log-asset price increments with realized volatility measures and performing a supremum-type recursive Dickey-Fuller test on the devolatized sample. The proposed test has a nuisance-parameter-free asymptotic distribution and is easy to implement. We study the size and power properties of the test in Monte Carlo simulations. A real-time date-stamping strategy based on the devolatized sample is proposed for the origination and conclusion dates of the explosive regime. Conditions under which the real-time date-stamping strategy is consistent are established. The test and the date-stamping strategy are applied to study explosive behavior in cryptocurrency and stock markets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here