The 2021 Quantum Materials Roadmap

4 Feb 2021  ·  Feliciano Giustino, Jin Hong Lee, Felix Trier, Manuel Bibes, Stephen M Winter, Roser Valentí, Young-Woo Son, Louis Taillefer, Christoph Heil, Adriana I. Figueroa, Bernard Plaçais, QuanSheng Wu, Oleg V. Yazyev, Erik P. A. M. Bakkers, Jesper Nygård, Pol Forn-Diaz, Silvano De Franceschi, J. W. McIver, L. E. F. Foa Torres, Tony Low, Anshuman Kumar, Regina Galceran, Sergio O. Valenzuela, Marius V. Costache, Aurélien Manchon, Eun-Ah Kim, Gabriel R Schleder, Adalberto Fazzio, Stephan Roche ·

In recent years, the notion of Quantum Materials has emerged as a powerful unifying concept across diverse fields of science and engineering, from condensed-matter and cold atom physics to materials science and quantum computing. Beyond traditional quantum materials such as unconventional superconductors, heavy fermions, and multiferroics, the field has significantly expanded to encompass topological quantum matter, two-dimensional materials and their van der Waals heterostructures, Moire materials, Floquet time crystals, as well as materials and devices for quantum computation with Majorana fermions. In this Roadmap collection we aim to capture a snapshot of the most recent developments in the field, and to identify outstanding challenges and emerging opportunities. The format of the Roadmap, whereby experts in each discipline share their viewpoint and articulate their vision for quantum materials, reflects the dynamic and multifaceted nature of this research area, and is meant to encourage exchanges and discussions across traditional disciplinary boundaries. It is our hope that this collective vision will contribute to sparking new fascinating questions and activities at the intersection of materials science, condensed matter physics, device engineering, and quantum information, and to shaping a clearer landscape of quantum materials science as a new frontier of interdisciplinary scientific inquiry.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics Materials Science Strongly Correlated Electrons Superconductivity Quantum Physics