The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

11 Nov 2016  ·  Grieb Jan Niklas the BOSS collaboration, Sánchez Ariel G. the BOSS collaboration, Salazar-Albornoz Salvador the BOSS collaboration, Scoccimarro Román the BOSS collaboration, Crocce Martín the BOSS collaboration, Vecchia Claudio Dalla the BOSS collaboration, Montesano Francesco the BOSS collaboration, Gil-Marín Héctor the BOSS collaboration, Ross Ashley J. the BOSS collaboration, Beutler Florian the BOSS collaboration, Rodríguez-Torres Sergio the BOSS collaboration, Chuang Chia-Hsun the BOSS collaboration, Prada Francisco the BOSS collaboration, Kitaura Francisco-Shu the BOSS collaboration, Cuesta Antonio J. the BOSS collaboration, Eisenstein Daniel J. the BOSS collaboration, Percival Will J. the BOSS collaboration, Vargas-Magana Mariana the BOSS collaboration, Tinker Jeremy L. the BOSS collaboration, Tojeiro Rita the BOSS collaboration, Brownstein Joel R. the BOSS collaboration, Maraston Claudia the BOSS collaboration, Nichol Robert C. the BOSS collaboration, Olmstead Matthew D. the BOSS collaboration, Samushia Lado the BOSS collaboration, Seo Hee-Jong the BOSS collaboration, Streblyanska Alina the BOSS collaboration, Zhao Gong-bo the BOSS collaboration ·

We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {\Lambda}CDM cosmology, we constrain the matter density to {\Omega}_m = 0.311 -0.010 +0.009 and the Hubble parameter to H_0 = 67.6 -0.6 +0.7 km s^-1 Mpc^-1, at a confidence level (CL) of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the {\Lambda}CDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019 -0.039 +0.048. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. 2016 to produce the final cosmological constraints from BOSS.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cosmology and Nongalactic Astrophysics