The Hyper Suprime-Cam extended Point Spread Functions and applications

28 Sep 2023  ·  L. P. Garate-Nuñez, A. S. G. Robotham, S. Bellstedt, L. J. M. Davies, C. Martínez-Lombilla ·

We present extended point spread function (PSF) models for the Hyper Suprime-Cam Subaru Strategic Program Public Data Release 3 (HSC-SSP PDR3) in all $\textit{g,r,i,Z}$ and $\textit{Y}$-bands. Due to its 8.2m primary mirror and long exposure periods, HSC combines deep images with wide-field coverage. Both properties make HSC one of the most suitable observing facilities for low surface brightness (LSB) studies, which are particularly sensitive to the PSF. By applying a median stacking technique of point-like sources with different brightness, we show how to construct the HSC-SSP PDR3 PSF models to an extent of R $\sim$ 5.6 arcmin. These models are appropriate for the HSC-PDR3 intermediate-state data which do not have applied the final aggressive background subtraction. The intermediate-state data is especially stored for users interested in large extended objects, where our new PSFs provide them with a crucial tool to characterise LSB properties at large angles. We demonstrate that our HSC PSFs behave reasonably in two scenarios. In the first one, we generate 2-D models of a bright star, showing no evidence of residual structures across the five bands. In the second scenario, we recreate the PSF-scattered light on mock images with special consideration of the effect of this additional flux on LSB measurements. We find that, despite the well-behaved nature of the HSC-PDR3 PSFs, there is a non-negligible impact on the faint light present in the mock images. This impact could lead to incorrect LSB measurements if a proper star subtraction is not applied.

PDF Abstract