The Newton Scheme for Deep Learning

16 Oct 2018  ·  Junqing Qiu, Guoren Zhong, Yihua Lu, Kun Xin, Huihuan Qian, Xi Zhu ·

We introduce a neural network (NN) strictly governed by Newton's Law, with the nature required basis functions derived from the fundamental classic mechanics. Then, by classifying the training model as a quick procedure of 'force pattern' recognition, we developed the Newton physics-based NS scheme. Once the force pattern is confirmed, the neuro network simply does the checking of the 'pattern stability' instead of the continuous fitting by computational resource consuming big data-driven processing. In the given physics's law system, once the field is confirmed, the mathematics bases for the force field description actually are not diverged but denumerable, which can save the function representations from the exhaustible available mathematics bases. In this work, we endorsed Newton's Law into the deep learning technology and proposed Newton Scheme (NS). Under NS, the user first identifies the path pattern, like the constant acceleration movement.The object recognition technology first loads mass information, then, the NS finds the matched physical pattern and describe and predict the trajectory of the movements with nearly zero error. We compare the major contribution of this NS with the TCN, GRU and other physics inspired 'FIND-PDE' methods to demonstrate fundamental and extended applications of how the NS works for the free-falling, pendulum and curve soccer balls.The NS methodology provides more opportunity for the future deep learning advances.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here