The SPTpol Extended Cluster Survey

13 Dec 2019  ·  Bleem L. E., Bocquet S., Stalder B., Gladders M. D., Ade P. A. R., Allen S. W., Anderson A. J., Annis J., Ashby M. L. N., Austermann J. E., Avila S., Avva J. S., Bayliss M., Beall J. A., Bechtol K., Bender A. N., Benson B. A., Bertin E., Bianchini F., Blake C., Brodwin M., Brooks D., Buckley-Geer E., Burke D. L., Carlstrom J. E., Rosell A. Carnero, Kind M. Carrasco, Carretero J., Chang C. L., Chiang H. C., Citron R., Moran C. Corbett, Costanzi M., Crawford T. M., Crites A. T., da Costa L. N., de Haan T., De Vicente J., Desai S., Diehl H. T., Dietrich J. P., Dobbs M. A., Eifler T. F., Everett W., Flaugher B., Floyd B., Frieman J., Gallicchio J., García-Bellido J., George E. M., Gerdes D. W., Gilbert A., Gruen D., Gruendl R. A., Gschwend J., Gupta N., Gutierrez G., Halverson N. W., Harrington N., Henning J. W., Heymans C., Holder G. P., Hollowood D. L., Holzapfel W. L., Honscheid K., Hrubes J. D., Huang N., Hubmayr J., Irwin K. D., James D. J., Jeltema T., Joudaki S., Khullar G., Klein M., Knox L., Kuropatkin N., Lee A. T., Li D., Lidman C., Lowitz A., MacCrann N., Mahler G., Maia M. A. G., Marshall J. L., McDonald M., McMahon J. J., Melchior P., Menanteau F., Meyer S. S., Miquel R., Mocanu L. M., Mohr J. J., Montgomery J., Nadolski A., Natoli T., Nibarger J. P., Noble G., Novosad V., Padin S., Palmese A., Parkinson D., Patil S., Paz-Chinchón F., Plazas A. A., Pryke C., Ramachandra N. S., Reichardt C. L., González J. D. Remolina, Romer A. K., Roodman A., Ruhl J. E., Rykoff E. S., Saliwanchik B. R., Sanchez E., Saro A., Sayre J. T., Schaffer K. K., Schrabback T., Serrano S., Sharon K., Sievers C., Smecher G., Smith M., Soares-Santos M., Stark A. A., Story K. T., Suchyta E., Tarle G., Tucker C., Vanderlinde K., Veach T., Vieira J. D., Wang G., Weller J., Whitehorn N., Wu W. L. K., Yefremenko V., Zhang Y. ·

We describe the observations and resultant galaxy cluster catalog from the 2770 deg$^2$ SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect, and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete followup we have confirmed as clusters 244 of 266 candidates at a detection significance $\xi \ge 5$ and an additional 204 systems at $4<\xi<5$. The confirmed sample has a median mass of $M_{500c} \sim {4.4 \times 10^{14} M_\odot h_{70}^{-1}}$, a median redshift of $z=0.49$, and we have identified 44 strong gravitational lenses in the sample thus far. Radio data are used to characterize contamination to the SZ signal; the median contamination for confirmed clusters is predicted to be $\sim$1% of the SZ signal at the $\xi>4$ threshold, and $<4\%$ of clusters have a predicted contamination $>10\% $ of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-to-SZ-mass ($\lambda-M$) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data---a difference significant at the 4 $\sigma$ level---with the relations intersecting at $\lambda=60$ . The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cosmology and Nongalactic Astrophysics