The Use of Multi-Scale Fiducial Markers To Aid Takeoff and Landing Navigation by Rotorcraft

15 Sep 2023  ·  Jongwon Lee, Su Yeon Choi, Timothy Bretl ·

This paper quantifies the performance of visual SLAM that leverages multi-scale fiducial markers (i.e., artificial landmarks that can be detected at a wide range of distances) to show its potential for reliable takeoff and landing navigation in rotorcraft. Prior work has shown that square markers with a black-and-white pattern of grid cells can be used to improve the performance of visual SLAM with color cameras. We extend this prior work to allow nested marker layouts. We evaluate performance during semi-autonomous takeoff and landing operations in a variety of environmental conditions by a DJI Matrice 300 RTK rotorcraft with two FLIR Blackfly color cameras, using RTK GNSS to obtain ground truth pose estimates. Performance measures include absolute trajectory error and the fraction of the number of estimated poses to the total frame. We release all of our results -- our dataset and the code of the implementation of the visual SLAM with fiducial markers -- to the public as open-source.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here