Three-Dimension Collision-Free Trajectory Planning of UAVs Based on ADS-B Information in Low-Altitude Urban Airspace

29 Apr 2024  ·  Chao Dong, Yifan Zhang, Ziye Jia, Yiyang Liao, Lei Zhang, Qihui Wu ·

The environment of low-altitude urban airspace is complex and variable due to numerous obstacles, non-cooperative aircrafts, and birds. Unmanned aerial vehicles (UAVs) leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security. However, the timely information of surrounding situation is difficult to acquire by UAVs, which further brings security risks. As a mature technology leveraged in traditional civil aviation, the automatic dependent surveillance-broadcast (ADS-B) realizes continuous surveillance of the information of aircrafts. Consequently, we leverage ADS-B for surveillance and information broadcasting, and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning. In detail, we propose the secure sub-airspaces planning (SSP) algorithm and particle swarm optimization rapidly-exploring random trees (PSO-RRT) algorithm for the UAV trajectory planning in law-altitude airspace. The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory, and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here