Towards Fast and Stable Federated Learning: Confronting Heterogeneity via Knowledge Anchor

5 Dec 2023  ·  Jinqian Chen, Jihua Zhu, Qinghai Zheng ·

Federated learning encounters a critical challenge of data heterogeneity, adversely affecting the performance and convergence of the federated model. Various approaches have been proposed to address this issue, yet their effectiveness is still limited. Recent studies have revealed that the federated model suffers severe forgetting in local training, leading to global forgetting and performance degradation. Although the analysis provides valuable insights, a comprehensive understanding of the vulnerable classes and their impact factors is yet to be established. In this paper, we aim to bridge this gap by systematically analyzing the forgetting degree of each class during local training across different communication rounds. Our observations are: (1) Both missing and non-dominant classes suffer similar severe forgetting during local training, while dominant classes show improvement in performance. (2) When dynamically reducing the sample size of a dominant class, catastrophic forgetting occurs abruptly when the proportion of its samples is below a certain threshold, indicating that the local model struggles to leverage a few samples of a specific class effectively to prevent forgetting. Motivated by these findings, we propose a novel and straightforward algorithm called Federated Knowledge Anchor (FedKA). Assuming that all clients have a single shared sample for each class, the knowledge anchor is constructed before each local training stage by extracting shared samples for missing classes and randomly selecting one sample per class for non-dominant classes. The knowledge anchor is then utilized to correct the gradient of each mini-batch towards the direction of preserving the knowledge of the missing and non-dominant classes. Extensive experimental results demonstrate that our proposed FedKA achieves fast and stable convergence, significantly improving accuracy on popular benchmarks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here