Trojan Detection in Large Language Models: Insights from The Trojan Detection Challenge

21 Apr 2024  ·  Narek Maloyan, Ekansh Verma, Bulat Nutfullin, Bislan Ashinov ·

Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, but their vulnerability to trojan or backdoor attacks poses significant security risks. This paper explores the challenges and insights gained from the Trojan Detection Competition 2023 (TDC2023), which focused on identifying and evaluating trojan attacks on LLMs. We investigate the difficulty of distinguishing between intended and unintended triggers, as well as the feasibility of reverse engineering trojans in real-world scenarios. Our comparative analysis of various trojan detection methods reveals that achieving high Recall scores is significantly more challenging than obtaining high Reverse-Engineering Attack Success Rate (REASR) scores. The top-performing methods in the competition achieved Recall scores around 0.16, comparable to a simple baseline of randomly sampling sentences from a distribution similar to the given training prefixes. This finding raises questions about the detectability and recoverability of trojans inserted into the model, given only the harmful targets. Despite the inability to fully solve the problem, the competition has led to interesting observations about the viability of trojan detection and improved techniques for optimizing LLM input prompts. The phenomenon of unintended triggers and the difficulty in distinguishing them from intended triggers highlights the need for further research into the robustness and interpretability of LLMs. The TDC2023 has provided valuable insights into the challenges and opportunities associated with trojan detection in LLMs, laying the groundwork for future research in this area to ensure their safety and reliability in real-world applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here