Trustworthy Artificial Intelligence Framework for Proactive Detection and Risk Explanation of Cyber Attacks in Smart Grid

12 Jun 2023  ·  Md. Shirajum Munir, Sachin Shetty, Danda B. Rawat ·

The rapid growth of distributed energy resources (DERs), such as renewable energy sources, generators, consumers, and prosumers in the smart grid infrastructure, poses significant cybersecurity and trust challenges to the grid controller. Consequently, it is crucial to identify adversarial tactics and measure the strength of the attacker's DER. To enable a trustworthy smart grid controller, this work investigates a trustworthy artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused by the control/status message of DERs. Thus, proposing and developing a trustworthy AI framework to facilitate the deployment of any AI algorithms for detecting potential cyber threats and analyzing root causes based on Shapley value interpretation while dynamically quantifying the risk of an attack based on Ward's minimum variance formula. The experiment with a state-of-the-art dataset establishes the proposed framework as a trustworthy AI by fulfilling the capabilities of reliability, fairness, explainability, transparency, reproducibility, and accountability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here