Universal Supervised Learning for Individual Data

22 Dec 2018  ·  Yaniv Fogel, Meir Feder ·

Universal supervised learning is considered from an information theoretic point of view following the universal prediction approach, see Merhav and Feder (1998). We consider the standard supervised "batch" learning where prediction is done on a test sample once the entire training data is observed, and the individual setting where the features and labels, both in the training and test, are specific individual quantities. The information theoretic approach naturally uses the self-information loss or log-loss. Our results provide universal learning schemes that compete with a "genie" (or reference) that knows the true test label. In particular, it is demonstrated that the main proposed scheme, termed Predictive Normalized Maximum Likelihood (pNML), is a robust learning solution that outperforms the current leading approach based on Empirical Risk Minimization (ERM). Furthermore, the pNML construction provides a pointwise indication for the learnability of the specific test challenge with the given training examples

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here