Unlocking the Transferability of Tokens in Deep Models for Tabular Data

23 Oct 2023  ·  Qi-Le Zhou, Han-Jia Ye, Le-Ye Wang, De-Chuan Zhan ·

Fine-tuning a pre-trained deep neural network has become a successful paradigm in various machine learning tasks. However, such a paradigm becomes particularly challenging with tabular data when there are discrepancies between the feature sets of pre-trained models and the target tasks. In this paper, we propose TabToken, a method aims at enhancing the quality of feature tokens (i.e., embeddings of tabular features). TabToken allows for the utilization of pre-trained models when the upstream and downstream tasks share overlapping features, facilitating model fine-tuning even with limited training examples. Specifically, we introduce a contrastive objective that regularizes the tokens, capturing the semantics within and across features. During the pre-training stage, the tokens are learned jointly with top-layer deep models such as transformer. In the downstream task, tokens of the shared features are kept fixed while TabToken efficiently fine-tunes the remaining parts of the model. TabToken not only enables knowledge transfer from a pre-trained model to tasks with heterogeneous features, but also enhances the discriminative ability of deep tabular models in standard classification and regression tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here