Using multiobjective optimization to reconstruct interferometric data (II): polarimetry and time dynamics

24 Jan 2024  ·  Alejandro Mus, Hendrik Müller, Ivan Martí-Vidal, Andrei Lobanov ·

In Very Long Baseline Interferometry (VLBI), signals from multiple antennas combine to create a sparsely sampled virtual aperture, its effective diameter determined by the largest antenna separation. The inherent sparsity makes VLBI imaging an ill-posed inverse problem, prompting the use of algorithms like the Multiobjective Evolutionary Algorithm by Decomposition (MOEA/D), as proposed in the first paper of this series. This study focuses on extending MOEA/D to polarimetric and time dynamic reconstructions, particularly relevant for the VLBI community and the Event Horizon Telescope Collaboration (EHTC). MOEA/D's success in providing a unique, fast, and largely unsupervised representation of image structure serves as the basis for exploring these extensions. The extension involves incorporating penalty terms specific to total intensity imaging, time-variable, and polarimetric variants within MOEA/D's multiobjective, evolutionary framework. The Pareto front, representing non-dominated solutions, is computed, revealing clusters of proximities. Testing MOEA/D with synthetic datasets representative of EHTC's main targets demonstrates successful recovery of polarimetric and time-dynamic signatures despite sparsity and realistic data corruptions. MOEA/D's extension proves effective in the anticipated EHTC setting, offering an alternative and independent claim to existing methods. It not only explores the problem globally but also eliminates the need for parameter surveys, distinguishing it from Regularized Maximum Likelihood (RML) methods. MOEA/D emerges as a novel and useful tool for robustly characterizing polarimetric and dynamic signatures in VLBI datasets with minimal user-based choices. Future work aims to address the last remaining limitation of MOEA/D, specifically regarding the number of pixels and numerical performance, to establish it within the VLBI data reduction pipeline.

PDF Abstract

Categories


Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Optimization and Control