Verified Reversible Programming for Verified Lossless Compression

2 Nov 2022  ·  James Townsend, Jan-Willem van de Meent ·

Lossless compression implementations typically contain two programs, an encoder and a decoder, which are required to be inverse to one another. We observe that a significant class of compression methods, based on asymmetric numeral systems (ANS), have shared structure between the encoder and decoder -- the decoder program is the 'reverse' of the encoder program -- allowing both to be simultaneously specified by a single, reversible function. To exploit this, we have implemented a small reversible language, embedded in Agda, which we call 'Flipper' (available at https://github.com/j-towns/flipper). Agda supports formal verification of program properties, and the compiler for our reversible language (which is implemented as an Agda macro), produces not just an encoder/decoder pair of functions but also a proof that they are inverse to one another. Thus users of the language get formal verification 'for free'. We give a small example use-case of Flipper in this paper, and plan to publish a full compression implementation soon.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here