Volt/VAR Optimization in the Presence of Attacks: A Real-Time Co-Simulation Study

Traditionally, Volt/VAR optimization (VVO) is performed in distribution networks through legacy devices such as on-load tap changers (OLTCs), voltage regulators (VRs), and capacitor banks. With the amendment in IEEE 1547 standard, distributed energy resources (DERs) can now provide reactive power support to the grid. For this, renewable energy-based DERs, such as PV, are interfaced with the distribution networks through smart inverters (SIs). Due to the intermittent nature of such resources, VVO transforms into a dynamic problem that requires extensive communication between the VVO controller and devices performing the VVO scheme. This communication, however, can be potentially tampered with by an adversary rendering the VVO ineffective. In this regard, it is important to assess the impact of cyberattacks on the VVO scheme. This paper develops a real-time co-simulation setup to assess the effect of cyberattacks on VVO. The setup consists of a real-time power system simulator, a communication network emulator, and a master controller in a system-in-the-loop (SITL) setup. The DNP3 communication protocol is adopted for the underlying communication infrastructure. The results show that corrupted communication messages can lead to violation of voltage limits, increased number of setpoint updates of VRs, and economic loss.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here