Wasserstein F-tests for Fréchet regression on Bures-Wasserstein manifolds

5 Apr 2024  ·  Haoshu Xu, Hongzhe Li ·

This paper considers the problem of regression analysis with random covariance matrix as outcome and Euclidean covariates in the framework of Fr\'echet regression on the Bures-Wasserstein manifold. Such regression problems have many applications in single cell genomics and neuroscience, where we have covariance matrix measured over a large set of samples. Fr\'echet regression on the Bures-Wasserstein manifold is formulated as estimating the conditional Fr\'echet mean given covariates $x$. A non-asymptotic $\sqrt{n}$-rate of convergence (up to $\log n$ factors) is obtained for our estimator $\hat{Q}_n(x)$ uniformly for $\left\|x\right\| \lesssim \sqrt{\log n}$, which is crucial for deriving the asymptotic null distribution and power of our proposed statistical test for the null hypothesis of no association. In addition, a central limit theorem for the point estimate $\hat{Q}_n(x)$ is obtained, giving insights to a test for covariate effects. The null distribution of the test statistic is shown to converge to a weighted sum of independent chi-squares, which implies that the proposed test has the desired significance level asymptotically. Also, the power performance of the test is demonstrated against a sequence of contiguous alternatives. Simulation results show the accuracy of the asymptotic distributions. The proposed methods are applied to a single cell gene expression data set that shows the change of gene co-expression network as people age.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here