Weakly Supervised AUC Optimization: A Unified Partial AUC Approach

23 May 2023  ·  Zheng Xie, Yu Liu, Hao-Yuan He, Ming Li, Zhi-Hua Zhou ·

Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems, which covers noisy label learning, positive-unlabeled learning, multi-instance learning, and semi-supervised learning scenarios. Within the WSAUC framework, we first frame the AUC optimization problems in various weakly supervised scenarios as a common formulation of minimizing the AUC risk on contaminated sets, and demonstrate that the empirical risk minimization problems are consistent with the true AUC. Then, we introduce a new type of partial AUC, specifically, the reversed partial AUC (rpAUC), which serves as a robust training objective for AUC maximization in the presence of contaminated labels. WSAUC offers a universal solution for AUC optimization in various weakly supervised scenarios by maximizing the empirical rpAUC. Theoretical and experimental results under multiple settings support the effectiveness of WSAUC on a range of weakly supervised AUC optimization tasks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here