Where and How to Attack? A Causality-Inspired Recipe for Generating Counterfactual Adversarial Examples

21 Dec 2023  ·  Ruichu Cai, Yuxuan Zhu, Jie Qiao, Zefeng Liang, Furui Liu, Zhifeng Hao ·

Deep neural networks (DNNs) have been demonstrated to be vulnerable to well-crafted \emph{adversarial examples}, which are generated through either well-conceived $\mathcal{L}_p$-norm restricted or unrestricted attacks. Nevertheless, the majority of those approaches assume that adversaries can modify any features as they wish, and neglect the causal generating process of the data, which is unreasonable and unpractical. For instance, a modification in income would inevitably impact features like the debt-to-income ratio within a banking system. By considering the underappreciated causal generating process, first, we pinpoint the source of the vulnerability of DNNs via the lens of causality, then give theoretical results to answer \emph{where to attack}. Second, considering the consequences of the attack interventions on the current state of the examples to generate more realistic adversarial examples, we propose CADE, a framework that can generate \textbf{C}ounterfactual \textbf{AD}versarial \textbf{E}xamples to answer \emph{how to attack}. The empirical results demonstrate CADE's effectiveness, as evidenced by its competitive performance across diverse attack scenarios, including white-box, transfer-based, and random intervention attacks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here