Identifying circular orders for blobs in phylogenetic networks

18 Feb 2024  ·  John A. Rhodes, Hector Banos, Jingcheng Xu, Cécile Ané ·

Interest in the inference of evolutionary networks relating species or populations has grown with the increasing recognition of the importance of hybridization, gene flow and admixture, and the availability of large-scale genomic data. However, what network features may be validly inferred from various data types under different models remains poorly understood. Previous work has largely focused on level-1 networks, in which reticulation events are well separated, and on a general network's tree of blobs, the tree obtained by contracting every blob to a node. An open question is the identifiability of the topology of a blob of unknown level. We consider the identifiability of the circular order in which subnetworks attach to a blob, first proving that this order is well-defined for outer-labeled planar blobs. For this class of blobs, we show that the circular order information from 4-taxon subnetworks identifies the full circular order of the blob. Similarly, the circular order from 3-taxon rooted subnetworks identifies the full circular order of a rooted blob. We then show that subnetwork circular information is identifiable from certain data types and evolutionary models. This provides a general positive result for high-level networks, on the identifiability of the ordering in which taxon blocks attach to blobs in outer-labeled planar networks. Finally, we give examples of blobs with different internal structures which cannot be distinguished under many models and data types.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here